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Outline
• Free surface modeling using moving grid technique 

with FVM approach (developed via UDF in FLUENT)
– Model development and validation
– Model application with previous dithering simulation

• Modeling transient fluid flow in CC SEN/mold region
– Boundary conditions for CFD simulation in CC process

• Flow rate prediction using gate-position-based model – inlet 
• Free surface simulation during dithering – top surface
• Modification of mass and momentum equations – shell 
• Pressure Modification – domain outlet    

– Simulated flow pattern and free surface evolution

• Parametric study on mold level fluctuation during 
dithering using the flow rate model
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Free Surface Modeling using a 
Moving Grid Technique

• Mold free surface must be modeled together with argon-steel 
multiphase flows to:
– study the gravity wave effects during dithering;
– difficulty rises in adopting both VOF and Eulerian-Eulerian models 

in the simulation using FLUENT;
– a simple, accurate and computational efficient interface-tracking 

model must be developed to model free surface motion together 
with multiphase flow simulation during dithering.

• In current work, an interface tracking model is developed in 
FLUENT using the moving grid technique:
– local mass conservation is enforced by moving the nodes 

properly following the Spatial Conservation Law (SCL);
– both kinematic and dynamic boundary conditions are directly 

applied in the model to solve the momentum equations;
– mesh smoothing is performed to ensure a good mesh quality.

Part 1
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Moving Grid Technique using FVM

Ref:

S. Muzaferija and M. Peri´c, Numerical Heat Transfer, Part B: Fundamentals: An International 
Journal of Computation and Methodology, 1997. Vol 32:4, 369-384

This node moving approach has been adopted and 
coded into FLUENT UDF for free surface modeling 
in current work

( )( ) 0gρ∇ ⋅ =−v v
Continuity equation with moving mesh:

Momentum equation with moving mesh:
( ) ( )( ) ( )g p

t
ρ

ρ µ
∂

+∇ ⋅ = −∇ +∇ ⋅ ∇ +
∂

−
v

v v Fv v
V is fluid velocity, while V g is grid velocity 
(mesh velocity)

Kinematic B.C.:

Figure from reference
( ) 0s fs

=⎡ ⎤− ⋅⎣ ⎦v v n or 0fsm =

Dynamic B.C.: all forces in equilibrium at fs.
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Large Amplitude Sloshing

Vertical 
Velocity (m/s)

• Free surface nodes 
moved via UDF, with 
kinematic and dynamic 
B.C.s satisfied

• Side wall nodes and 
internal nodes are 
smoothed via solution 
of a Laplace equation 
diffusing free surface 
nodes displacements 
to interior nodes

Example Problem:

Viscous liquid is filled in a long 
trapezoid‐shaped container. 
The top wall of the container 
suddenly gets removed, and 
liquid is released to gravity
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Model Validation –
Analytical Solution and Case Setup

• 2-D small-amplitude sloshing problem

Where zi is the ith root of the equation below, and zi is defined as: 
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Initial Interface:
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Prosperetti, A., 1981. “Motion of two 
superposed viscous fluids”. Physics of 
Fluids, 24(7), July, pp. 1217–1223.
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Model Validation –
Comparison with Analytical Solution
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 Analytical Solution
 FLUENT simulation, 25*40 mesh, time step 0.01 sec
 FLUENT simulation, 200*80 mesh, time step 0.002 sec

• Excellent match with 
analytical solution 
obtained even for 
simulations using the 
very coarse mesh

• Using second order 
(or higher) advection 
scheme and temporal 
scheme are crucial for 
achieving accuracy
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Application to Simulate Dithering 
with Gas Injection

• Casting parameters:
– Casting speed: 40 ipm
– Mold width: 72 inches
– Mold thickness: 10 inches
– Submergence depth: 8 inches
– Dithering amplitude: 14 mm or 7 mm
– Dithering frequency: 0.4 Hz
– Total gas injection rate: 30 LPM (20 SLPM with 75% leakage 

based on 19psi back pressure [1])
– SEN bore diameter: 80 mm
– Plate diameter: 75 mm
– SEN bottom shape: Cup bottom

[1] (R. Liu and BG Thomas, AISTech 2012, (Atlanta, GA, May 7-9, 2012).
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Free Surface Movement –
Pressure Method
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Free Surface Movement –
Moving Grid 
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Comparison of Simulated and 
Measured Mold Level 
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Calculated mold level (pressure method)
Calculated mold level (moving grid)

Pressure method: 
0

L

p ph
gρ

−
∆ =

p0 is the static pressure at starting time (160 
sec in current case)
Pressure at quarter mold point at meniscus is 
used in current calculation

• Results from both methods match reasonably well with measured mold level



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab •     Rui Liu 12

Comparison of Free Surface 
Capturing Methods

• Pressure method
– easiest to obtain, used only for post-processing
– unable to model gravity waves

• Volume of Fluid (VOF)
– fixed Eulerian mesh
– smearing interface due to numerical diffusion from volume 

fraction equation
– small time step required for stability restriction in explicit 

marching (expensive)

• Moving grid technique (in FVM)
– moving mesh representing domain deformation (mixed Eulerian 

and Lagrangian mesh)
– sharp interface directly obtained from mesh
– cannot predict entrainment of the secondary phase
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Conclusion – Part 1

• A free surface model with moving grid technique is 
developed in FLUENT via UDF based on its “dynamic 
mesh” feature.

• The free surface model has been validated using:
– the small amplitude sloshing analytical solution, which 

proves that the model is accurate even with relative coarse 
mesh;

– mold top surface motion during CC dithering process, 
which shows:

• the capability of the model to simulate free surface behavior under 
gravity waves;

• the model can be used together with Eulerian-Eulerian multiphase 
flow models to study free surface behavior in cases with argon 
injection into the CC mold
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• List of Cases from ArcelorMittal Indiana Harbor 
3SP dithering trial;

• Calculation of sloshing frequency
– a rectangular tank (3-D solution);
– an infinite deep channel (2-D solution).

• Computation of dithering effects on mold flow 
pattern and mold level fluctuations
– computational model setup;
– quasi-steady state flow pattern and free surface 

deformation;
– flow and free surface evolution during dithering.

Part 2 Modeling Transient Flows and Free 
Surface during the Dithering Trial
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ArcelorMittal Indiana Harbor 
Dithering Trial

• Casting parameters for the dithering trial:
– Casting speed: 40 ipm
– Mold width: 72.5 inches
– Mold thickness: 10 inches
– Submergence depth: 5.6 inches
– Total gas injection flow rate: 1 SLPM (1% in hot condition)
– SEN bore diameter: 80 mm
– Plate diameter: 75 mm
– SEN bottom shape: Roof bottom

Case # Frequency (Hz) Stroke (mm) Mold Operator Comments
1 0.6 14 Not many waves
2 0.8 14 More waves than 0.6 Hz
3 0.9 14 Giant sloshing, worst level scenario
4 1.0 14 More waves than 0.8 Hz
5 1.2 12 No waves in the mold, best frequency
6 1.4 7 Very few waves, but 1.2 Hz is better
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• Domain geometry and mesh 
• Computation condition:

– Numerical parameters
– Turbulence models
– Discretization scheme
– Boundary conditions

• Quasi-steady state solution
• Flow field evolution during dithering 

process – simulating trial case 3

Numerical Simulation
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Computational Domain and Mesh
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Turbulence Model 1. k-ω with std. wall functions
2. Detached Eddy Simulation (DES)

Pressure Scheme body force based
Advection Scheme 1. 2nd order upwinding

2. Bounded Central Differencing

Time Step 0.005 sec
Mesh Count 1.5 million
Cell Shape Hexahedral

Domain Height
(mold region)

2.5 m

Assumptions:
1. 
Half mold was used as 
computational domain
(neglecting left-right flow 
asymmetry)
2.
Iso-thermal flow

Upper zone:
Dynamic mesh zone,
• moving grid at top surface
• smoothing the mesh elsewhereLower zone:

Fixed mesh
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Flow Rate Calculation – Inlet B.C.

Equation for gate-position-based model (including 
gas effect):

( )1 2
2 22 2 22

2

11 1
2

SEN eff
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port SEN GAP GAP SG SG port
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single phase flow

two phase flow
where

For continuous caster, an extra term should be added to 
account for pressure drop due to clogging:
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In current study, C=0 is assumed (no clogging).
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Flow Rate Curve – Inlet B.C.
(Gate Position vs. Flow Rate)
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• Nice match 
obtained, 
analytical SEN 
flow rate model 
is validated

• Gap area is:
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Mass/Momentum Sinks – Shell B.C.

VC

( ),z x yShell Surface :

z∆

Translated Shell Surface :

( ),z x y z+ ∆

Time needed for shell 
surface to travel this 
distance: t∆

Cz V t∆ = ∆

Volume created by shell surface sweeping:

( )( ) ( ), ,
xy xy

xy C xy
S S

V z x y z z x y dxdy z dxdy zS V tS⎡ ⎤∆ = + ∆ − = ∆ = ∆ = ∆⎣ ⎦∫∫ ∫∫

C xym V V tSρ ρ∆ = ∆ = ∆Corresponding Mass rate: C xym V Sρ=

Corresponding rate of change of Momentum: P mV=

VShell 
surface 
projected 
to x-y 
plane: xyS
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Pressure Boundary Modification 
– Domain Outlet B.C.

• The proper B.C. at domain outlet should be a 
specific (target) flow rate, calculated from:
– Slab dimension
– Casting speed

• Pressure has to be modified to enforce the 
target flow rate at each time step, using 
Bernoulli’s equation: 

T

casting

QV V
WT

= =

2 2

2 2
C T

C T

V Vp pρ ρ
+ = +

2 2

2
T C

T C

V Vdp p p ρ −
= − =

The average pressure correction at domain outlet is:
2 2

2

T C
Q Q

WT WTdp ρ

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

This average pressure 
correction should be added 
to the pressure B.C. at 
domain outlet every iteration

QT: target flow rate
QC: calculated flow rate
pT: target pressure
pC: calculated (prescribed) 
pressure at domain outlet
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Simulation Results –
Quasi-Steady State Solution

k-ω Model vs. DES Model
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obtain ensemble averaged solution)

-- velocity distribution from DES model
(DES switching between k-ω model 
and LES)
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Free Surface Simulation –
k-ω vs. DES Model
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DES Simulated Transient Flow Pattern 
(quasi-steady state)

• Center plane velocity distribution
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Free Surface Motion 
(quasi-steady state)
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Calculation of Sloshing 
Frequency in a Rectangular Tank

2 2 2 2

2

,
tanh

4i j

g i j i jf h
a b a b

π
π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

• M.C. Kim and S.S. Lee[1] suggested the following equation to calculate 
the sloshing frequency in a rectangular tank

• A. Prosperetti[2] derived the analytical solution for 2-D small 
amplitude waves (sloshing) problem, with the natural frequency as a 
function of gravity acceleration and wave number k:

Ref:
[1] M.C. Kim and S.S. Lee, “HYDROELASTIC ANALYSIS OF A RECTANGULAR TANK”.
[2] A. Prosperetti, 1981. “Motion of two superposed viscous fluids”. Physics of Fluids, 24(7), July, pp. 1217–1223.

x, i
z y, j

a b

h
In the dithering case, half mold width a is 36.25 inch 
(0.92 m), and mold thickness b is 10 inch (0.254 m), 
supposing only mode (i,j) = (1,0) occurs due to SEN 
blocking effect.

1,0

9.8067 0.92
4 4 0.92

gf Hz
aπ π

= = =
×
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gkω = nk
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π

= for n = 1, frequency is: 0 0.92
2 4

gf Hz
a

ω
π π

= = =



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab •     Rui Liu 27

Flow Rate Variation during Dithering 
in Case 3 (Giant Sloshing)

• Measured slide-gate position is converted into 
inlet flow rate variations using the gate-position-
based model
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Case 3: Flow Pattern Evolution 
at Mold Center Plane
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Mold top surface is a swing, and the 
jet is pushing it periodically… 
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Case 3: Free Surface Behavior
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Center Plane Velocity Evolution 
for Case 3
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Free Surface Sloshing 
for Case 3
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Conclusion – Part 2

• Computational models were setup and successfully 
adopted to investigate transient flow and free 
surface evolution, with:
– Predicted flow rate at nozzle inlet B.C.
– Mass/momentum sink terms at shell
– Modified pressure B.C. at domain outlet

• Sloshing frequency is calculated via analytical 
solutions and validated via numerical simulation;

• The “swing” effect is identified via simulated results 
as the cause of giant sloshing which was observed 
to occur when dithering frequency matches with 
sloshing frequency.
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Parametric Study on Mold Level 
Fluctuations during Dithering

• Simpler models are needed to predict average 
mold level fluctuations during dithering process:
– derived from global mass conservation
– with flow rate calculated from gate-position-based model

• Effects of the following factors are investigated via 
parametric study using the simple average mold 
level model, including:
– dithering stroke
– casting speed

Part 3
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Derivation of Average Mold Level 
Equation for Dithering

Discretize the equation above in the time domain, 
resulting in the following form:

( ) ( )0 0
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1 1n
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iA l A
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Predicted and Measured Mold Level 
– Case 1, 0.6 Hz, 14 mm stroke
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f = 0.8 Hz stroke = 14 mmCase 2

Case 2 – 0.8 Hz, 14 mm stroke
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Case 3 – 0.9 Hz, 14 mm stroke
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Case 4 – 1.0 Hz, 14 mm stroke
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Case 5 – 1.2 Hz, 12 mm stroke
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Case 6 – 1.4 Hz, 7 mm stroke
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Mold Level Fluctuation
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Mold level fluctuation (rms) defined as: Flow rate variation (rms) defined as:

• Monotonic correlation 
found between flow rate 
variation and mold level 
fluctuations 

• Mold level fluctuation 
deviates from the 
correlation when dithering 
frequency is very close to 
sloshing frequency of the 
mold (0.92 Hz in current 
case)
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Casting Speed Effect on Level 
Fluctuations

Dithering Stroke (mm)
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Tundish level: 58 inches Mold width: 72.5 inches 

• Higher speed causes more gate opening, operating in steeper part of flow 
rate/gate position curve, thus increasing flow‐rate and level variations

• For each casting speed, both flow rate variation and mold level fluctuation 
change almost linearly with dithering stroke (not at sloshing frequency)

Dither frequency: 0.8 Hz 
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Slide Gate Cylinder
Connecting 
Block

L = 2 mm

d = 1 mm

L = 2 mm

d = 0 mm

Initial position of the 
cylinder relative to the 
connecting block is crucial 
to backlash analysis, 

d and L are the two 
important parameters

Backlash Effect on 
Slide Gate Position

Schematic of backlash from 
ArcelorMittal Research Center at 
East Chicago
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Conclusions – Part 3

• Dithering frequency does not affect mold level 
fluctuations unless it is very close to the sloshing 
frequency of the mold (less than ±0.1 Hz);

• Predicted mold level fluctuation matches reasonably 
well with measurements, which proves the potential 
use of the simple analytical model during dithering;

• Flow rate variation during dithering is approximately 
linearly correlated with dithering stroke;

• Increasing casting speed or tundish level increases 
mold level fluctuation by opening the slide-gate 
wider, which creates more flow rate variation during 
dithering.
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• Effects of backlash on mold level fluctuation 
is complicated:
– both “actual” slide-gate position and dithering 

stroke are affected by backlash;
– Initial position of slide-gate, together with the 

initial relative position of connecting block and 
cylinder determines the actual flow rate and flow 
rate variation during dithering;

– Slide-gate dithering from a steady gate position for 
a casting speed will cause mold level to rise, thus 
the average position of the slide-gate dithering 
should be calibrated taking into account  both 
local slope of flow rate curve and backlash effect.

Conclusions – Part 3 (cont.)
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Future Work

• Multiphase flow modeling
– CU-FLOW GPU code development with Eulerian-

Lagrangian approach to model two phase bubbly flows 
in CC process;

– model validation using water model PIV experiment
• More parametric study cases with:

– the effect of mold width on flow rate variation and mold 
level fluctuation

– backlash effect on flow rate during dithering
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